

BUSINESSBROCHURE

PDC Bit & Tricone Bit

DRILL BIT MANUFACTURER

15 YEARS OF PROFESSIONAL MANUFACTURING EXPERIENCE

Hebei Haoqi Drilling Equipment Co., Ltd.

Hebei Haoqi Drilling Equipment Co., Ltd.

Address: Junziguan Village, Shijing Village, Hejian City, Cangzhou City, Hebei Province, China

Tel: 86-13803177810

Website: https://www.pdcbit.com.cn/

COMPANY PROFILE

About us

Hebei Haoqi drilling equipment Co.,Ltd was established in 2010, engaged in the bit manufacturing industry for more than 10 years, specializing in the manufacture of PDC bit, tricone bit, mud motor and reamer which can be used in water wells, mining, coalbed methane geothermal field, oil and gas field, rotary excavation, trenchless fields and other fields. The annual production capacity of 10,000 drill bits and the inventory of more than 3,000 new drill bits can ensure the fastest delivery time.

The factory has always focused on quality by advanced technology and high-efficiency management. To make sure our bits quality stable, we produce as per "8S" and execute according to the ISO9001:2008 and ISO14001:2004, API Spec7-1. Now Haoqi has established strategic corporation relationship with all the oil-fields in China, also sold products to America, Russia, Mid-east, Indonesia and so on.

Certificate

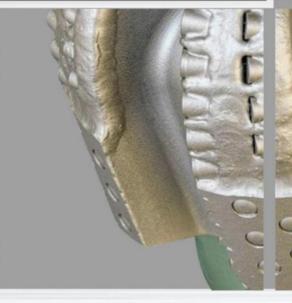
Workshop & Equipment (Partial)

Production Equipment

Production Process

Product

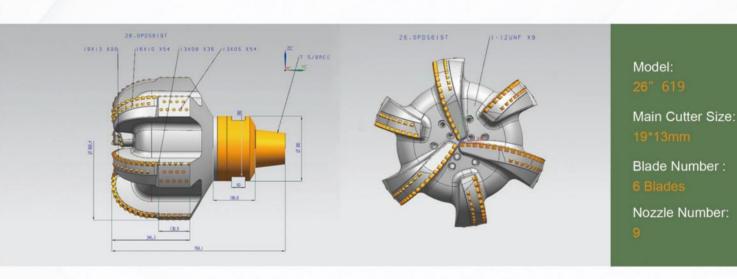
Product



PDC BIT

High-quality products and customized services

Guidance of Choosing PDC Bit **Formations** Compressive Formation Description Rock Types IADC Code Strength Grading clay, siltstone Viscous soft formations with M/S112~M/S223 1 <4000PSI sandstone low compressive strength silt rock, marl Soft formations with low lignite, sandstone 2 <8000PSI compressive strength M/S222~M/S333 siltstone and high drillability hard gypsum silt rock, marl Viscous soft formations with 3 lignite, siltstone <12000PSI M323~M434 low compressive strength hard gypsum, tuff mudstone Medium hard to hard formations <16000PSI 4 limestone with high compressive strength M333~M434 hard gypsum and abrasive thin interbeds limstone Hard and tight formations with 5 <24000PSI hard gypsum M434~M634 very high compressive strength dolomite Hard formations with very high calcareous shale 6 <32000PSI compressive strength and some siliceous sandstone M613~M844 abrasive interbeds siltstone quartzite Very hard and high abrasive 7 >32000PSI M713~M844 ianeous rock strength formations



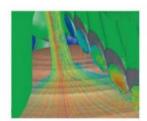
15 years PDC BIT Manufacturing experience

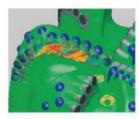
We design, customize and manufacture oil and gas tools with an objective to provide class leading technologies that reduce your cost of drilling.

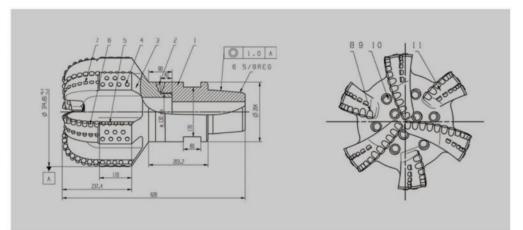
Because PDC bits are increasingly required to drill through challenging sections in one run optimizing hydraulic efficiency is a major consideration in the design of the high-efficiency PDC bits from HAOQI. Every HAOQI PDC bit is the product of ongoing analysis and lab testing, designed to achieve the most efficient balance between open area and blade geometry—especially in low horsepower-per-square-inch (HSI) environments. Features such as fully mapped and optimized diverging junk slots, multiple nozzle orientations, and enhanced computational fluid dynamics modeling make these bits the most efficient PDC drill bits in the industry.

Bit shank thread and recommended make up torque

	Bit size (in)	API regular pin (in)	Recommended make up torque (kN.m)
:	3 7/8~4 1/2	2 3/8	4~4.8
2	4 5/8~5	2 7/8	6~7.5
	5 1/2~6 3/4	3 1/2	9.5~12
7	7 1/2~8 3/4	4 1/2	16~22
9	9 1/2~13 5/8	6 5/8	38~43
	14 3/4~17 1/2	7 5/8	46~54




PDC BIT Technological Expertise


Engineering and Modeling

Computational fluid dynamics (CFD) analysis

Efficient hydraulics for improved performance and lower drilling costs. HAOQI BIT design engineers use CFD to model the interaction of drilling fluids with the bit and the wellbore. Complex algorithms enable the simulation of a wide variety of downhole conditions, allowing engineers to evaluate various blade and nozzle configurations to optimize flow patterns for cuttings removal. Ensuring the cutting structure is always drilling virgin formation improves bit performance. Extensive use is made of this sophisticated technique to maximize the available hydraulic energy, providing bits that will drill at the lowest-possible cost per foot.

1.Cutting Teeth

Combined with the sharp cutting characteristics of tungsten carbide material, the aggressiveness and wear resistance of the drill bit can be improved by rationally configuring high-quality small-size PDC cutters and maximizing the local cutters equivalent density.

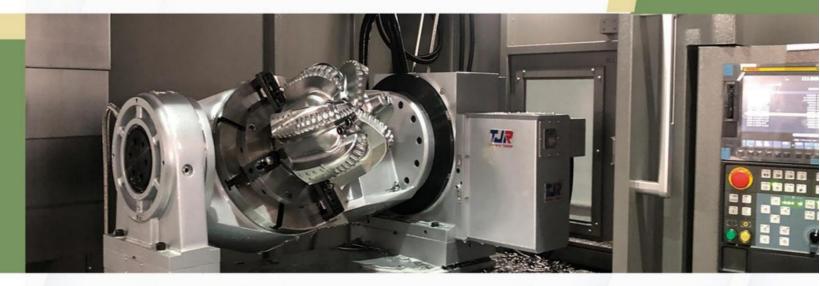
2. Gauge Surface

Premium arc PDC cutter gauge can reduce the abrasion of rock on the bit's body and increase wear resistance and stability of the drill bit body.

3.Nozzle

Interchan geable screw nozzles can effectively flush the impact cutting debris.

4. Gauge cutter


Gauge cutters can absorb high stress effectively and minimize cutter fracturing and wearing, thus enhance the wear resistance of cutters.

Bits with double row cutters are custom designed for high impact or high abrasion areas where durability and ROP are the primary concerns. These bits are best utilized in sandstones and carbonate formations.

High ROP Shale Optimized Bits

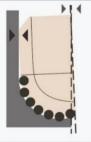
These bits are designed with bullet body, thin and tall blades and high junk slot area to prevent bit balling and hence deliver excellent ROP. These bits are always optimized for good hydraulics that maximizes cooling and cleaning of cutters.

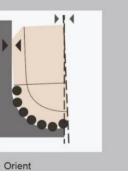
Directional: Gauge Pad Design

Gauge Pad Features:

Active 2

HAOQI BIT offers a wide range of gauge configurations, depending on the requirements for: Dog leg and/or Gauge pad wear resistance.


Step Gauge & Bit Tilt



Tangent

RSS & Motor

Gauge pad relief allows the bit to tilt and change

Leading technology PDC BIT Reduce your drilling cost per meter

HAOQI BIT possesses state of the art manufacturing facilities supported with advanced designing and engineering, R&D and quality control processes to ensure consistent high standards of manufacturing.

- 1.DART Drill Bit Design and Selection Process Maximize performance with the right bit for the right application.
- 2. Materials Research Improve drill bit durability and longevity.
- 3. Drilling Technology Laboratory Shorten the lead time between concept and product introduction.
- 4.HAOQI BIT Experimental Test Facility Redefine drilling performance with an advanced knowledge of drilling environments.
- 5. Product Evaluation Laboratory Strengthen performance and reliability through diagnostics.

11 HEBEI HAOQI HEBEI HAOQI 12

Details determine quality

Quality comes from profession

5 1/2" HS413

Blades; 4

Connection Thread: 2 7/8 API REG Nozzle Qty: 13/32*4 16/32*1

Cutter Size: 13*13mm WOB (kN/mm): 20-80 RPM (r/min): 60-300

7 7/8" HS419

Blades: 4

Connection Thread: 4 1/2 API REG

Nozzle Qty: 20/32*7 Cutter Size: 19*19mm WOB (kN/mm): 20-110 RPM (r/min): 60-300

9 7/8" HS416

Blades: 4

Connection Thread: 6 5/8 API REG

Nozzle Qty: 20/32*6 Cutter Size: 16*13mm WOB (kN/mm): 20-110 RPM (r/min): 60-260

10 5/8" HS716

Blades; 7

Connection Thread: 6 5/8 API REG

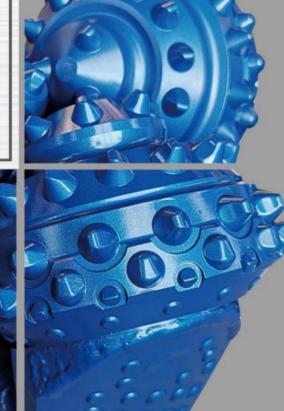
Nozzle Qty: 14/32*6 Cutter Size: 16*13mm WOB (kN/mm): 20-140 RPM (r/min): 60-260

12 1/4" HS716

Blades: 7

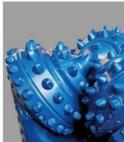
Connection Thread: 6 5/8 API REG

Nozzle Qty: 14/32*8 Cutter Size: 16*13mm WOB (kN/mm): 20-160 RPM (r/min): 60-260



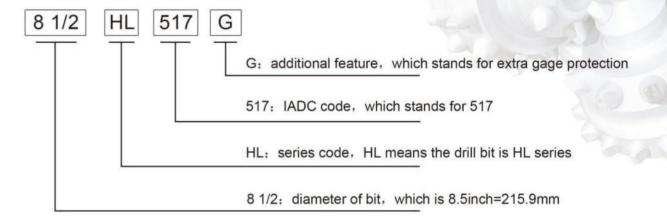
Tricone Bit

High-quality products and customized services



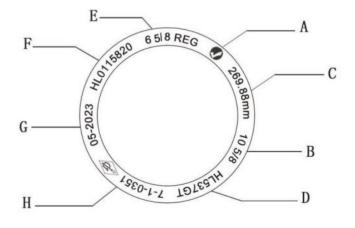
Guidance of Choosing Tricone Bit

	IADC code	Formation	Rock Types				
	111-117		very soft shale 、 mudstone clay 、 soil layer 、 plaster				
Steel	121-127	Soft formation with low compressive strength and high drillability.	mudstone、soft shale、soft sandstone unconsolidated rock、tuff				
Tooth	131-137		shale、soft limestone				
	214-225	High compressive strength medium-hard formations.	shale soft limestone				
2	315-317	Semi-abrasive or abrasive hard formations.	hard limestone				
	415-447	Soft formation with low compressive strength and high drillability.	soft shale clay layer				
	515-517		mudstone、soft shale loose sandstone				
	525-527	Soft to medium hard formation with low compressive strength and high drillability.	medium shale、sandstone、shale				
TCI	535-547		sandstone、serpentine medium soft limestone				
	615-617	Medium-hard formation with high compressive strength.	hard shale、limestone、sandstone Iron ore、shale、Mica schist marble、granite、dolomites、diabase				
	625-637	Medium-hard formation with high compressive strength.	dolomite、hard limestone、grave hard sandstone、limestone quartzite、basalt、hard shale taconite、rhyplite、pyrite、hematite				



1. Tricone Bit Naming

The model number of tricone bit is consisted of four parts, namely diameter code, series code, IADC code and additional feature code.


Example: 8 1/2 HL 517G

2. Additional Feature

Code	Additional feature	С	Center nozzle
G	Extra gage protection	L	Strengthening block
K	Wide-top tooth	x	Wedge-shaped tooth
т	Special gear gauge	Υ	Conical-ended shape tooth

3. Bit Identification

HK Series Tricone Bit

The HK series drill bit adopts sliding bearing rubber seal, which can withstand high drilling pressure at normal speed, and can be used in extremely soft to medium hard formations with different cutting structures.

O Product Description:

- 1. In the form of sliding bearing, B4 wear-resistant alloy layer is overlaid on the surface of the bearing. and silver is plated on the inner hole of the tooth wheel, so as to improve the bearing capacity and anti seizing capacity.
- 2. The bearing 0-ring is made of high saturated fluorinated nitrile rubber, which has good wear resistance and high temperature resistance; the compression ratio and section diameter of the seal ring are optimized to improve the sealing performance of the seal ring; the lip sealis adopted to improve the reliability of the seal.
- 3. Vacuum pumping and oil filling are adopted, and the oil storage pressure balance system can balance the internal and external pressure difference of the bearing, provide good lubrication guarantee for the bearing system at the same time.
- 4. The bit is made of cemented carbide inserts with high strength and toughness for oil. According to the compressive strength and drillability of different formation, the specific cutting structure, inserts shape and inserts material are selected to ensure the wear resistance and toughness of inserts can reach the optimal matching and have a high ROP. The steel bit adopts the wear-resistant wieldingmaterial independently developed and the wear-resistant material is fully wrapped on the tooth surface, which not only maintain the high mechanical drilling speed of the steel bit, but also improve the cutting tooth life of the bit.

Bit pressure and speed parameter table												
Model	HK417	HK437	HK517	HK527	HK537	HK547	HK617					
WOB(kN/mm)	0.35-0.90	0.35-0.95	0.35-1.05	0.35-1.05	0.35-1.05	0.35-1.05	0.35-1.05					
RPM(r/min)	140-70	140-60	120-50	120-50	110-40	110-40	80-40					
Model	HK627	HK637	HK647	HK737	HK117	HK127	HK217					
WOB(kN/mm)	0.35-1.05	0.70-1.20	0.70-1.20	0.70-1.20	0.35-0.90	0.35-1.00	0.35-1.05					
RPM(r/min)	80-40	70-40	70-40	70-40	150-80	150-70	150-60					

HK Series Tricone Bit

CONNECTION THREAD: 2 7/8 REG WOB (kN/mm): 0.35~1.04 RPM (r/min): 240~60

CONNECTION THREAD: 3 1/2 REG WOB (kN/mm): 0.50~1.09 RPM (r/min): 200~40

CONNECTION THREAD: 4 1/2 REG WOB (kN/mm): 0.50~1.09 RPM (r/min): 200~40

CONNECTION THREAD: 6 5/8 REG WOB (kN/mm): 0.35~1.04 RPM (r/min): 240~60

CONNECTION THREAD: 6 5/8 REG WOB (kN/mm) : 0.35~1.01 RPM (r/min) : 240~60

CONNECTION THREAD: 6 5/8 REG WOB (kN/mm) : 0.35~1.04 RPM (r/min) : 240~60

CONNECTION THREAD: 4 1/2 REG WOB (kN/mm) : 0.35~1.04 RPM (r/min) : 240~60

CONNECTION THREAD: 6 5/8 REG WOB (kN/mm): 0.50~1.09 RPM (r/min): 200~40

CONNECTION THREAD: 6 5/8 REG WOB (kN/mm): 0.50~1.09 RPM (r/min): 200~40

CONNECTION THREAD: 6 5/8 REG WOB (kN/mm) : 0.35~0.90 RPM (r/min) : 170~80

CONNECTION THREAD: 6 5/8 REG WOB (kN/mm) : 0.35~0.90 RPM (r/min) : 170~80

CONNECTION THREAD: 6 5/8 REG WOB (kN/mm) : 0.35~0.90 RPM (r/min) : 170~80

HL Series Tricone Bit

HL series bit is a kind of rock breaking tool indispensable for geological exploration, oil drilling and various drilling industries. Its strong stability, high reliability, good hydraulic effects, high rock breaking effciency and long service life make it for rotary drilling, motor drilling, high temp drilling, deep drilling and other drilling conditions.

Product Description:

Steel Tooth

- 1) The optimized tooth structure makes the wearing-resistant alloy welded on the tooth surface and tooth top thicker and more offensive, effectively improving the wearing resistance of the teeth and greatly increasing the rate of penetration.
- 2) Through new welding technologies, new welding materials are welded on the surface of the inner row teeth and outer row teeth, thus making the teeth more wear-resistant.

► TCI

The technical engineers choose the tungsten carbide teeth with higher wearing resistance and stronger toughness for the poor working environment under high speed drilling conditions. Meanwhile, they use the computer simulation software to optimize the teeth structure and teeth placement to reduce repeated crushing, mitigate teeth wearing and lift the rate of penetration. Therefore, the drilling pressure can be spread over each tooth of the three cones in a more balanced way to ensure a balanced, stable and lasting state.

Bit pressure an	d speed para	ameter table					
Model	HL417	HL437	HL517	HL527	HL537	HL547	HL617
WOB(kN/mm)	0.35-1.01	0.35-0.95	0.35-1.05	0.35-1.05	0.35-1.04	0.50-1.09	0.50-1.09
RPM(r/min)	240-60	240-60	240-60	240-60	240-60	200-40	200-40
Model	HL627	HL637	HL647	HL117	HL127	HL137	HL217
WOB(kN/mm)	0.50-1.09	0.50-1.09	0.50-1.17	0.35-0.90	0.35-1.00	0.35-1.05	0.50-1.20
RPM(r/min)	200-40	200-40	200-40	170-80	170-70	140-60	120-50

Bit Size		API Thread	Bit Model
in	mm	in	
4 1/2	114.3	2 3/8	HL117、HL217、HL517、HL537
5 1/4	133.4	3 1/2	HL117、HL137、HL217、HL517、HL537
5 1/2	139.7	3 1/2	HL117、HL217、HL517、HL537
6	152.4	3 1/2	HL117、HL217、HL517、HL537、HL617、HL637
6 1/8	155.6	3 1/2	HL517、HL537、HL617、HL637
6 1/4	158.8	3 1/2	HL517、HL537、HL617、HL637
6 1/2	165.1	3 1/2	HL117、HL217、HL517、HL537、HL617、HL637
6 3/4	171.5	3 1/2	HL517、HL537、HL617、HL637
7 1/2	190.5	4 1/2	HL117、HL127、HL517、HL537、HL617、HL637
7 5/8	193.7	4 1/2	HL517、HL537、HL617、HL637
7 7/8	200	4 1/2	HL117、HL127、HL437、HL517、HL527、HL537、HL617、HL637
8 1/2	215.9	4 1/2	HL437、HL517、HL527、HL537、HL617、HL637
8 3/4	222.3	4 1/2	HL437、HL517、HL527、HL537、HL617、HL637
9 1/2	241.3	6 5/8	HL117、HL437、HL517、HL527、HL537、HL617、HL637
9 7/8	250.8	6 5/8	HL117、HL437、HL517、HL527、HL537、HL617、HL637
10 5/8	269.9	6 5/8	HL117、HL437、HL517、HL527、HL537、HL617、HL637
11 5/8	295.3	6 5/8	HL117、HL437、HL517、HL527、HL537、HL617、HL637
12 1/4	311.2	6 5/8	HL117、HL437、HL517、HL527、HL537、HL617、HL637
13 3/4	346.1	6 5/8	HL117、HL437、HL517、HL527、HL537、HL617、HL637
14 3/4	374.7	7 5/8	HL117、HL437、HL517、HL527、HL537、HL617、HL637
15 1/2	393.7	7 5/8	HL117、HL437、HL517、HL527、HL537、HL617、HL637
17 1/2	444.5	7 5/8	HL117、HL515、HL517、HL535、HL537

Note: Drill bit sizes and models not shown in the table can be designed and developed according to user needs

HL Series Tricone Bit

CONNECTION THREAD: 3 1/2 REG WOB (kN/mm): 0.35~1.04 RPM (r/min): 240~60

CONNECTION THREAD: 4 1/2 REG WOB (kN/mm): 0.35~1.04 RPM (r/min): 240~60

CONNECTION THREAD: 4 1/2 REG WOB (kN/mm): 0.35~1.04 RPM (r/min): 240~60

CONNECTION THREAD: 6 5/8 REG WOB (kN/mm) : 0.50~1.09 RPM (r/min) : 200~40

CONNECTION THREAD: 6 5/8 REG WOB (kN/mm): 0.50~1.09 RPM (r/min): 200~40

CONNECTION THREAD: 6 5/8 REG WOB (kN/mm): 0.50~1.09 RPM (r/min): 200~40

CONNECTION THREAD: 6 5/8 REG WOB (kN/mm): 0.35~1.01 RPM (r/min): 240~60

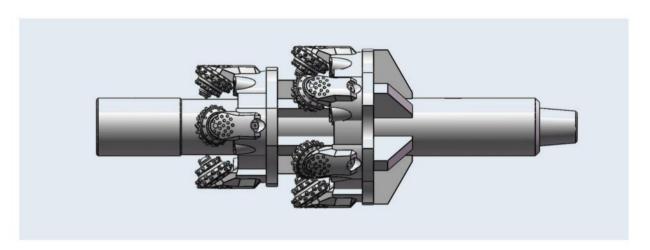
CONNECTION THREAD: 6 5/8 REG WOB (kN/mm) : 0.35~1.04 RPM (r/min) : 240~60

CONNECTION THREAD: 6 5/8 REG WOB (kN/mm) : 0.35~1.04 RPM (r/min) : 240~60

CONNECTION THREAD: 6 5/8 REG WOB (kN/mm): 0.35~1.04

RPM (r/min) : 200~40

CONNECTION THREAD: 6 5/8 REG WOB (kN/mm): 0.35~0.90 RPM (r/min): 170~80


CONNECTION THREAD: 6 5/8 REG WOB (kN/mm): 0.35~0.90 RPM (r/min): 170~80

HDD ROCK REAMER

The roller cone rock reamer is a common rock reaming tool for non-excavation and crossing construction industries. Our company produces various types of roller reamers suitable for various types of non-excavation and crossing drilling rigs, suitable for various strata, and the size covers 220- 1600mm.

Trenchless bit configuration table

1 2 3 4 5 6	Reamer	Segments								
	Diameter(mm)	8 1/2	9 7/8	12 1/4	13 5/8					
1	300	3	1		1					
2	400	5	4	1	1					
3	500	6	5	4	1					
4	600	7	6~7	5~6	5					
5	700	7	7~8	6~7	6					
6	800	1	1	7~8	7					
7	900	1	1	8~9	8~9					
8	1000	1	1		9~10					
9	1100	1	1		10~11					
10	1200	1	1		12~13					
11	1300	1	1		10~11					
12	1400	1	1		12~13					
13	1500	1			13~14					

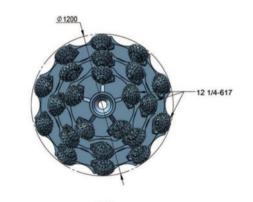
Note:1) The configuration of the trenchless bit can be adjusted according to customer requirements, formation, drilling rig model or any other construction requirements;

2) Different types of piate or barrel centralizing structures can be applied according to customer requirements.

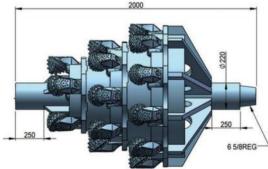
HDD Tools

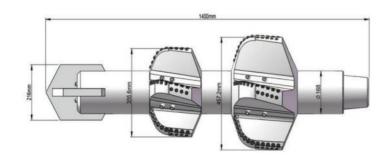
Structural features

According to the different construction conditions on site, select the appropriate palm type and quantity ratio to ensure product life and construction efficiency.

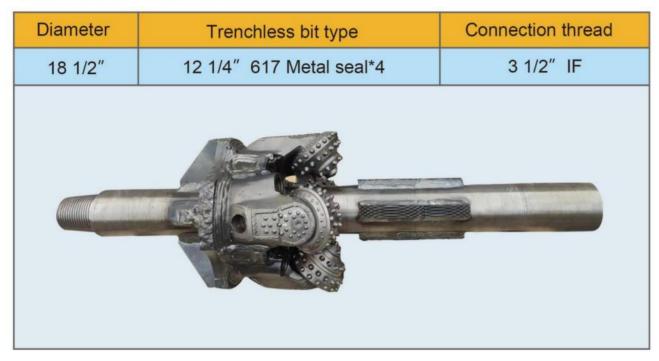


Using high-quality single roller cone, from accessories to finishing and assembly are completed in strict accordance with high standards, and the quality is controllable.




The multi-layer and multi-channel welding process reduces thermal damage and enhances the tensile strength of the reamer.

Reference picture



Reference picture 1

Reference picture 2

Diameter	Trenchless bit type	Connection thread
28"	13 5/8" 617 Metal seal*6	4" IF

Reference picture 3

Diameter	Trenchless bit type	Connection thread
20"	12 1/4" 537 Metal seal*4	3 1/2" IF

Reference picture 4

Diameter	Trenchless bit type	Connection thread
31"	13 5/8" 617 Metal seal*8	4 1/2" IF

Single Roller Cone

- Metal-sealed sliding bearing structure, hard alloy surfacing on the surface of the bearing tooth brush inner hole Silver plated to improve load carrying capacity anti-seize and bearing stability.
- Optimal design of tooth row, number of teeth, and main cutting teeth adopt conical teeth which are suitable for drilling in hard and brittle formations.
- The precision designed and processed new oil storage lubrication system applies new synthetic grease to improve the bearing internal. The external pressure balances the speed, better protects the bearing sealing system and improves reliability.
- In order to adapt to directional and horizontal drilling, the full palm back teeth with gradient changes in height and exposed tooth height are adopted.

Structural features

As a component, the single roller bit is alternately installed on the thin-wal shaft to form a rotary drlling. Among them, the two and three toothed wheels need to be welded to achieve the full coverage of the broken ring.

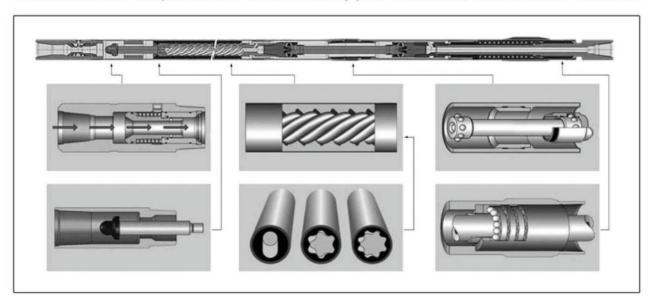
The single roller bit is composed of a single cone and a lug matched by a bearing. According to different strata and construction requrements, different cuting structures can be selected: wear resistant carbide are welded and cemented carbide inserts are inserted on the back of the lug.

12 1/4" trenchless bit

9 7/8" trenchless bit

Reference picture

Mud Motor


The screw drilling tool uses mud and clear water as the power medium, which is transported to the bottom of the hole through the center hole of the drill pipe. It is essentially an energy conversion device that converts liquid pressure into mechanical energy. When drilling, the screw drilling tool directly drives the core tube and the drill bit connected to the drive shaft at the bottom of the hole to rotate, and the entire drill string is only a channel for conveying high-pressure work and a rod for supporting the counter torque of the drill bit, without rotary motion.

Drilling with screw drilling tools has many advantages compared with conventional drilling, such as greatly reduced drill pipe wear and high drilling speed. It is the main tool for drilling directional holes, and it has played a role in drilling non-excavation fields.

Constitution

Downhole motor is composed of four assemblies of by-pass valve, motor, cardan shaft and drive shaft.

Working Principle

Downhole motor is a kind of downhole dynamic drilling tool upon the power of drilling mud. Mud stream from the outlet of mudpump flows through a by-pass valve into the motor. This stream produces pressure loss between inlet and outlet of the pump, to push the rotor into rotating, and to transmit the torque and speed to the bit. The downhole motor property mainly depends upon its property parameters.

Reference picture

Mud Motor Technology Parameters

out Power hp	30	40	43	71	53	101	66	64	09	09	94	91	92	105	160	170	86	248	94	285
Max Out	22	29	31	52	39	74	73	47	44	44	69	19	89	78	118	125	72	182	69	209
Max Pressure Max Output Power	7700	7700	12375	12375	12375	12375	12375	12375	22500	22500	22500	22500	22500	22500	22500	36000	36000	22500	36000	36000
Max Pre KN	35	35	55 1	55 1	55 1	55 1	55 1	55 1	100 2	100 2	100 2	100 2	100 2	100 2	100 2	160 3	160 3	100 2	160 3	160 3
rque Ib-ft	750	970	776	1685	1287	1987	2127	1532	1519	1997	2624	2920	1879	2506	3609	4616	5837	1026	5445	2501
Max Torque N.m lb-ft	1016	1315	1325	2284	1745	2694	2884	2078	2060	2707	3557	3958	2548	3398	4893	6257	7913	1390	7382	3390
e Loss Psi	455	809	809	1018	809	910	910	809	455	809	684	092	455	809	809	092	092	809	1062	532
Max Pressure Loss Mpa Psi	3.14 4	4.19 6	4.19 6	7.02 10	4.19 6	6.28 9	6.28 9	4.19 6	3.14 4	4.19 6	4.71 6	5.24 7	3.14 4	4.19 6	4.19 6	5.24 7	5.24 7	4.19 6	7.32 10	3.67 5
	es .	4	4	7	4	9	9	4	3	4	4	2	3	4	4	5	2	4	7	3
Rotory Speed	80-240	82-246	130-260	127-254	123-247	142-297	133-277	120-251	116-232	118-276	80-182	80-182	94-219	94-219	86-172	102-204	85-170	160-563	134-268	112-224
Roto	8	8	13	12											80	10			13	
ate gpm	50-150	50-150	80-160	80-160	100-200	120-250	120-250	120-250	150-300	150-350	120-275	120-275	150-350	150-350	200-400	250-500	250-500	100-350	250-500	200-400
Flow Rate	8	8	0	03												32				
Ipm	190-568	190-568	303-606	303-606	378-757	454-946	454-946	454-946	568-1136	568-1324	454-1040	454-1040	567-1325	567-1325	757-1514	946-1892	946-1892	378-1325	946-1892	757-1514
hread	3/8REG	3/8REG	SEG.	SEG.	SEG.	7/8REG	SEG.	7/8REG	1/2REG	1/2REG	1/2REG	1/2REG	1/2REG							
Thre ו	2 3/8F	2 3/8F	2 7/8REG	2 7/8REG	2 7/8REG	2 7/8F	2 7/8REG	2 7/8F	3 1/2F	3 1/2F	3 1/2F	3 1/2F	4 1/2F	4 1/2F	4 1/2F	4 1/2F	4 1/2F	4 1/2F	4 1/2F	4 1/2F
Connection T	SEG.	SEG.	SEG.	SEG.	SEG.	SEG.	SEG.	EG	SEG	SEG.	SEG	SEG	SEG	SEG.	SEG	SEG.	SEG	SEG.	SEG	SEG.
Conn	2 3/8REG	2 3/8REG	2 7/8REG	2 7/8REG	2 7/8REG	2 7/8REG	2 7/8REG	2 7/8REG	3 1/2REG	3 1/2REG	3 1/2REG	3 1/2REG	4 1/2REG	4 1/2REG	4 1/2REG	4 1/2REG	4 1/2REG	4 1/2REG	4 1/2REG	4 1/2REG
	8//	8//	8//	8//	9	9	9	9	8//	8//	8//	8//	3/8	3/8	3/8	1/2	1/2	8//	2/8	2/8
size	114-149 4 1/2-5 7/8	114-149 4 1/2-5 7/8	4 5/8-5 7/8	118-149 4 5/8-5 7/8	4 3/4-6	4 3/4-6	121-152 4 3/4-6	121-152 4 3/4-6	5 7/8-7 7/8	5 7/8-7 7/8	5 7/8-7 7/8	5 7/8-7 7/8	6 3/4-8 3/8	6 3/4-8 3/8	6 3/4-8 3/8	200-216 7 7/8-8 1/2	7 7/8-8 1/2	7 7/8-9 7/8	200-251 77/8-97/8	7 7/8-9 7/8
Bit size	-149	-149	118-149	-149	121-152	121-152	1-152	1-152	149-200	149-200	149-200	149-200	171-213	171-213	171-213	-216	200-216	200-251	-251	200-251
	114	114	118	118	12	12	12	12	149	149	149	149	171	171	171	200	200	200	200	200
.⊑	3 1/2	3 1/2	3 3/4	3 3/4	4 1/8	4 1/8	4 1/8	4 1/8	4 3/4	4 3/4	4 3/4	4 3/4	5 1/2	5 1/2	5 1/2	6 1/4	6 1/4	6 1/2	6 1/2	6 1/2
mm	68	89	98	98	105	105	105	105	120	120	120	120	140	140	140	159	159	165	165	165
_	0.	0.	0.	7.	4.0	0.9	0.9	4.0	3.0	4.0	4.5	5.0	3.0	4.0	4.0	5.0	-5.0	0.	0.7	3.5
Model	5LZ89-3.0	5LZ89-4.0	7LZ95-4.0	7LZ95-6.7	5LZ105.4.0	6LZ105.6.0	7LZ105.6.0	9LZ105.4.0	5LZ120.3.0	5LZ120.4.0	7LZ120.4.5	7LZ120.5.0	5LZ140.3.0	5LZ140.4.0	7LZ140.4.0	7LZ159.5.0	C7LZ159-5.0	LZ165-7.0	4LZ165-7.0	5LZ165-3.5
	51	19	7	71	51	19	71	16	51	51	71	71	51	51	71	7	C7	L	4	5L

Mud Motor Technology Parameters

Model	mm in	Bit size	Connection Thread	Thread	Flow Rate	Rate	Rotory Speed	Max Pressure Loss Mpa Psi	s Max Torque N.m lb-ft	Max Pressure KN Ib	Max Output Power KW hp	wer
3LZ172-6.0	172 63/4	1 213-251 8 3/8-9 7/8	4 1/2REG	4 1/2REG	1136-1893	300-200	160-266	6.28 910	6341 4677	170 38250	156 212	2
4LZ172-7.0	172 63/4	213-251 8 3/8-9 7/8	4 1/2REG	4 1/2REG	1136-2271	300-600	140-280	7.32 1062	8623 6360	170 38250	220 299	6
5LZ172-4.0	172 63/4	213-251 8 3/8-9 7/8	4 1/2REG	4 1/2REG	946-1893	250-500	93-186	4.19 608	5813 4287	170 38250	93 126	(0
7LZ172-4.0	172 6 3/4	1 213-251 8 3/8-9 7/8	4 1/2REG	4 1/2REG	1136-2271	300-600	80-160	4.19 608	8097 5973	170 38250	117 158	8
7LZ172.5.3	178 7	213-251 8 3/8-9 7/8	4 1/2REG	4 1/2REG	1136-3028	300-800	62-164	5.55 805	13693 10100	170 38250	204 277	7
7LZ178.6.0	178 7	213-251 8 3/8-9 7/8	4 1/2REG	4 1/2REG	1136-2271	300-600	80-160	6.28 910	12136 8952	170 38250	175 238	8
3LZ197.7.0	197 7 3/4	251-311 97/8-12 1/4	6 5/8REG	6 5/8REG	1136-2271	300-600	116-232	7.33 1063	10218 7537	200 45000	218 297	7
4LZ197.6.0	197 7 3/4	251-311 9 7/8-12 1/4	6 5/8REG	6 5/8REG	1136-2650	300-700	94-220	6.28 910	10750 7929	200 45000	212 288	8
4LZ197.7.0	197 7 3/4	251-311 9 7/8-12 1/4	6 5/8REG	6 5/8REG	1136-2271	300-600	110-220	7.33 1063	10959 8083	200 45000	215 292	2
5LZ197.4.0	197 7 3/4	251-311 9 7/8-12 1/4	6 5/8REG	6 5/8REG	1136-2650	300-700	80-188	4.19 608	8138 6002	200 45000	144 196	(0)
7LZ203.5.0	203 8	251-311 97/8-12 1/4	6 5/8REG	6 5/8REG	1136-2650	300-700	70-164	5.24 760	11579 8541	200 45000	175 238	8
7LZ203.5.0HR	203 8	251-311 9 7/8-12 1/4	6 5/8REG	6 5/8REG	1136-2650	300-700	70-164	7.76 1125	17148 12648	200 45000	259 352	2
7LZ203.6.0	203 8	251-311 9 7/8-12 1/4	6 5/8REG	6 5/8REG	1136-2650	300-700	70-164	6.28 910	13877 10236	200 45000	210 285	10
5LZ210.5.0	210 8 1/4	251-375 9 7/8-14 3/4	6 5/8REG	6 5/8REG	1136-2650	350-700	81-162	5.24 760	11661 8601	300 67500	174 237	7
7LZ210.5.0	210 8 1/4	251-311 97/8-12 1/4	6 5/8REG	6 5/8REG	1514-3028	400-800	79-158	5.24 760	13538 9985	300 67500	198 269	0
5LZ216.6.0	216 8 1/2	251-311 97/8-12 1/4	6 5/8REG	6 5/8REG	1325-2650	350-700	81-162	6.28 910	13975 10308	320 72000	209 284	4
7LZ216-3.5	216 8 1/2	251-311 97/8-12 1/4	6 5/8REG	6 5/8REG	1893-4164	500-1100	62-137	3.67 530	14769 10894	320 72000	192 261	_
5LZ244-5.0	244 9 5/8	311-445 12 1/4-17 1/2	6 5/8REG	6 5/8REG	2271-4542	600-1200	89-178	5.24 760	18451 13609	360 81000	298 406	(0
5LZ244-6.0	244 9 5/8	311-445 12 1/4-17 1/2	6 5/8REG	6 5/8REG	2271-4542	600-1200	89-178	6.28 910	22113 16310	360 81000	358 487	7
7LZ244-5.0	244 9 5/8	311-445 12 1/4-17 1/2	6 5/8REG	6 5/8REG	2271-4542	600-1200	66-132	5.24 760	23319 17200	360 81000	287 390	0